

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

THE REACTION OF 5-METHYL-3-(*o*-TOLYL)RHODANINE WITH ACETONE-d₆ AND METHANOL

İlknur Doğan^a; Arzu Yaman^a

^a Department of Chemistry, Boğaziçi University, Bebek, İstanbul, Turkey

Online publication date: 31 May 2001

To cite this Article Doğan, İlknur and Yaman, Arzu(2001) 'THE REACTION OF 5-METHYL-3-(*o*-TOLYL)RHODANINE WITH ACETONE-d₆ AND METHANOL', *Spectroscopy Letters*, 34: 3, 365 – 370

To link to this Article: DOI: 10.1081/SL-100002291

URL: <http://dx.doi.org/10.1081/SL-100002291>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

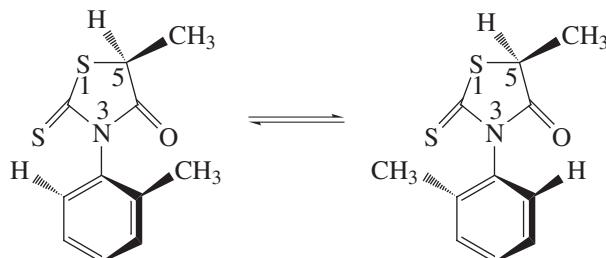
**THE REACTION OF
5-METHYL-3-(*o*-TOLYL)RHODANINE
WITH ACETONE-d₆ AND METHANOL**

İlknur Doğan* and Arzu Yaman

Boğaziçi University, Department of Chemistry,
80815 Bebek, İstanbul, Turkey

ABSTRACT

5-Methyl-3-(*o*-tolyl)rhodanine was found to react with acetone-d₆ and methanol at the 5-position of the heterocyclic ring. The reactions have been followed and the products have been identified by ¹H NMR.


Key Word: 5-Methyl-3-(*o*-tolyl)rhodanine.

INTRODUCTION

Tautomerization of the rhodanine ring has attracted attention both theoretically (1) and experimentally (2). We have been working on the internal hindered rotation in N-(*o*-aryl) substituted rhodanines (3,4,5) where the hindered rotation around the N_(sp₂)-C_(aryl) bond causes the formation of resolvable (4) enantiomers. Now we extend our research to N-(*o*-aryl) substituted 5-methyl rhodanines (Fig. 1) where the hindered rotation will form diastereomers (6). Rang *et al* studied the racemization of the rhodanine ring *via* enolization and concluded that the 5-alkyl

*Corresponding author.

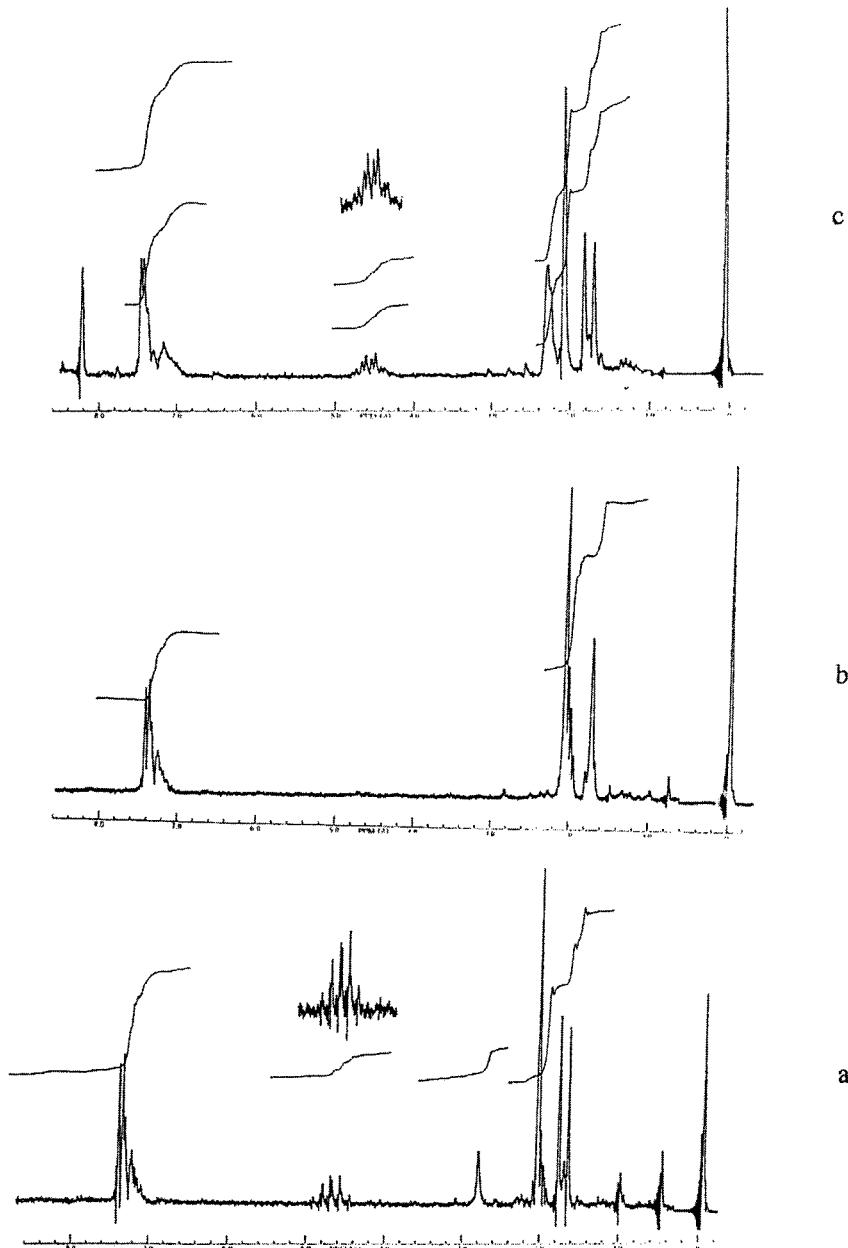
Figure 1. The thermally interconvertable rotational isomers of 5-methyl-3-(*o*-tolyl)-rhodanine.

rhodanines were optically stable in neutral solvents which meant for us that the racemization mechanism for our compounds (Fig. 1) will be via rotation around the $N_{(sp^2)}-C_{(aryl)}$ bond.

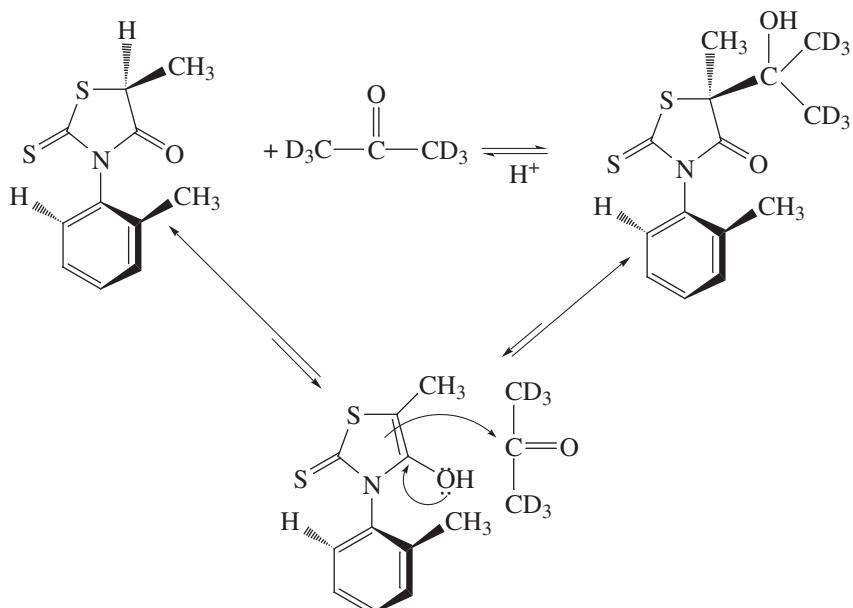
As an implication of slow tautomerization of the rhodanine ring on the other hand, we observed a slow reaction of 5-methyl-3-(*o*-tolyl)rhodanine with acetone- d_6 and with methanol which will be reported in this paper.

RESULTS AND DISCUSSION

Reaction with Acetone- d_6


5-methyl-3-(*o*-tolyl)rhodanine has been synthesized by the reaction of *o*-tolylisotiocyanate with ethylthioglycolate, its purity has been checked and the compound has been fully characterized (6). The 60 MHz 1H NMR spectrum of the compound (7) taken in acetone- d_6 showed the presence of a doublet at 1.7 ppm due to the presence of the methyl group at 5 position of the ring, a singlet at around 2 ppm due to the *ortho* methyl protons, a quartet at 4.6 ppm due to the methine proton and the aromatic protons at about 7.1 ppm (Fig. 2). The solution was kept in the NMR tube at 25°C and spectra were taken at regular time intervals. It has been observed that after 7 days the quartet at 4.6 ppm that had been assigned to the methine proton at the 5-position of the heterocyclic ring disappeared. The disappearance of the quartet was accompanied with the conversion of the doublet which was assigned to the protons of the methyl group at 5 position, to a singlet (Fig. 2). This result has been interpreted in terms of the reaction of 5-methyl-3-(*o*-tolyl)rhodanine with acetone- d_6 at 5-position of the heteroring. The reaction probably took place *via* enolization of the rhodanine ring (Scheme 1).

When the reaction mixture was acidified with trifluoroacetic acid, the original signals of the 5-methyl-3-(*o*-tolyl)rhodanine reappeared (Fig. 2), which showed


REACTION OF 5-METHYL-3-(*o*-TOLYL)RHODANINE

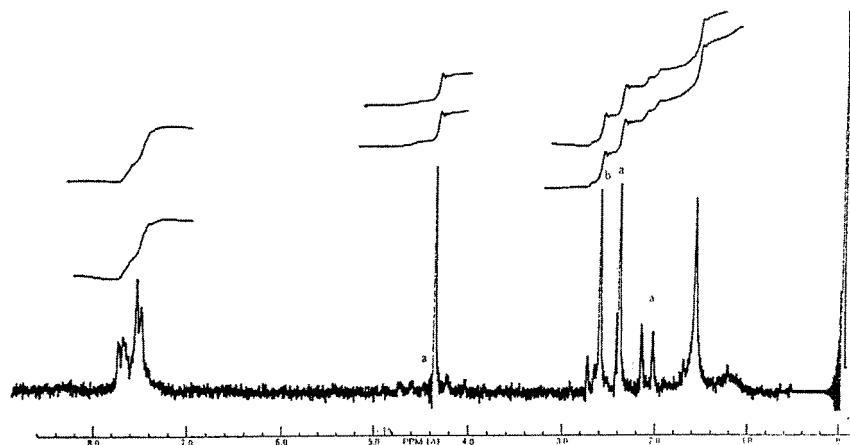
367

Figure 2. The 60 MHz ^1H NMR spectrum of 5-methyl-3-(*o*-tolyl)rhodanine in acetone- d_6 . a: before reaction, b: after reaction with acetone- d_6 , c: after addition of CF_3COOH .

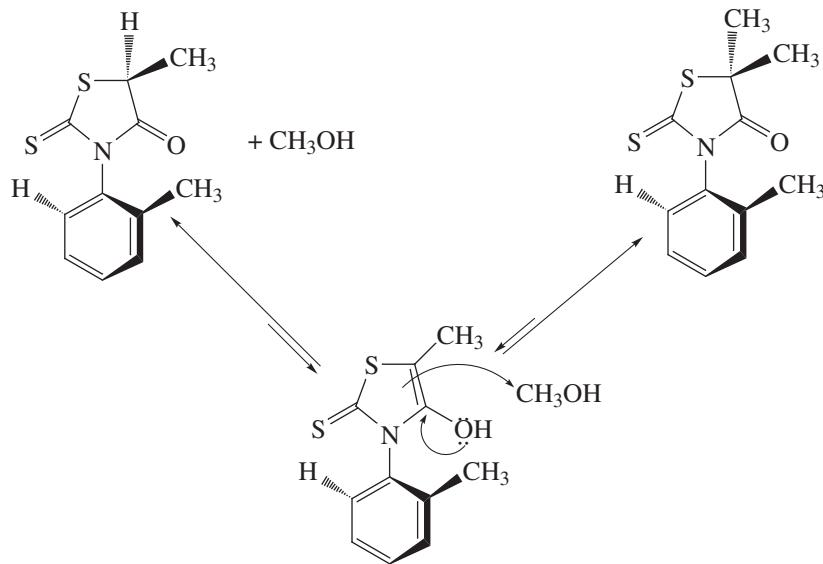
Scheme 1. The reaction of 5-methyl-3-(*o*-tolyl)rhodanine with acetone-d₆ shown on one of the diastereomers.

that the reaction was reversible in acid. A similar reaction had been observed for the 5-methylene protons of barbituric and 2-thiobarbituric acids (8).

The reaction with acetone-d₆ was also carried out with 3-(*o*-tolyl)rhodanine and with 5,5-dimethyl-3-(*o*-tolyl)rhodanine as well, however no reaction has been observed under the same reaction conditions. The fact that no reaction has been observed for the 5,5-dimethyl derivative, where there is no chance for tautomerization of rhodanine, supports our interpretation of the reaction with acetone-d₆ at the 5 position of the ring via enolization. Observation of no reactivity for the rhodanine unsubstituted at position 5 shows that substitution at this position increases the reactivity. In fact a higher rate of enolization had been observed for the 5-phenylrhodanine studied in reference 2.


Reaction with Methanol

The ¹H NMR spectrum taken in deuteriochloroform after 5-methyl-3-(*o*-tolyl)rhodanine was refluxed in methanol for 5 days, followed by evaporation of the methanol showed that the compound reacted with methanol at 5-position of



REACTION OF 5-METHYL-3-(*o*-TOLYL)RHODANINE

369

Figure 3. The 60 MHz ^1H NMR spectrum of 5-methyl-3-(*o*-tolyl)rhodanine in CCl_4 after reaction with methanol. ^aSignals due to unreacted rhodanine, ^bsignals due to the product shown in scheme 2.

Scheme 2. The reaction of 5-methyl-3-(*o*-tolyl)rhodanine with methanol shown on one of the diastereomers.

the heterocyclic ring to give 5,5-dimethyl-3-(*o*-tolyl)rhodanine. The product was obtained together with some unreacted reactant (Fig. 3) so that the spectrum obtained contained the two superimposed spectra. The additional singlets which appeared after the reaction at 2.2 ppm and 2.3 ppm have been assigned to the *o*-methyl and the two methyl groups at 5-position of the ring, respectively. The mechanism of the reaction of the compound with methanol is thought to involve tautomerization of the rhodanine ring as shown in Scheme 2. No such reaction has been observed with ethanol.

APPARATUS

Proton NMR spectra were recorded on a Bruker AC-200 (200 MHz, T = 23°C) or on a Varian T-60 A NMR (60 MHz, T = 23°C).

ACKNOWLEDGMENT

We thank to Bogaziçi University research fund for their financial support (project No: 99B509).

REFERENCES

1. Enchev V., Petkov I., Chorbadjiev S. *Structural Chemistry* 1994; 5(4): 225.
2. Rang K., Isaksson R., Sandström J. *J. Chem. Soc., Perkin Trans. 2*, 1996; 1493.
3. Doğan İ., Burgemeister T., Içli S., Mannschreck A. *Tetrahedron* 1992; 48: 7157.
4. Doğan İ., Pustet N., Mannschreck A. *J. Chem. Soc., Perkin Trans. 2*, 1993; 1557.
5. Karataş M., Koni S., Doğan İ. *Can. J. Chem.* 1998; 76: 254.
6. Doğan İ., Yaman A. Manuscript in preparation.
7. For this compound, 250 MHz ^1H NMR spectrum shows the presence of diastereomeric peaks which is reported in the paper cited in reference 6.
8. Oğuz F., Doğan İ. *Spectroscopy Letters*. 1998; 31(2): 469.

Received November 28, 2000

Accepted January 10, 2001

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SL100002291>